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a b s t r a c t

The applicability of conventional digital imaging to quantitative determination of fat and total protein in
cow0s milk, based on the phenomenon of light scatter, has been proved. A new algorithm for extracting
features from digital images of milk samples has been developed. The algorithm takes into account
spatial distribution of light, diffusely transmitted through a sample.

The proposed method has been tested on two sample sets prepared from industrial raw milk
standards, with variable fat and protein content. Partial Least-Squares (PLS) regression on the features
calculated from images of monochromatically illuminated milk samples resulted in models with high
prediction performance when analysed the sets separately (best models with cross-validated R2¼0.974
for protein and R2¼0.973 for fat content).

However when analysed the sets jointly with the obtained results were significantly worse (best
models with cross-validated R2¼0.890 for fat content and R2¼0.720 for protein content). The results
have been compared with previously published Vis/SW-NIR spectroscopic study of similar samples.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Efficient routine analysis of milk quality is of critical impor-
tance for any dairy production. Fat and protein content are two
particularly important milk quality parameters, characterising its
nutritional value. Nowadays, traditional physicochemical analysis
of milk tends to be replaced by modern optical spectroscopic
techniques combined with multivariate data analysis. Thus, mid-
infrared spectroscopy has been widely accepted as a laboratory
standard for the milk nutrient analysis [1]. At the same time,
constantly growing demand for real-time milk analysis stimulates
the development of alternative techniques capable of performing
in-line or field measurements. An effective real-time technique
should provide high throughput and reliability of analysis at a
reasonable price.

The present work gives further development to the idea of
exploiting the phenomenon of light scattering by fat and protein
particles for their quantitative analysis. Early turbidimetric
analysis was based on the observed correlation between the fat
content and the detected extinction of light dispersed by a milk
sample at individual wavelengths [2,3]. This method, however, is
highly susceptible to the size variability of colloidal milk particles,

even in homogenised milk, and thus, is now considered obsolete.
There are only a few later works making use of the scatter for milk
fat and protein analysis. They typically require an intensive
pretreatment of milk samples, i.e. deep homogenisation and
protein dispersion [4], and thus, are impracticable in the case of
raw natural milk. The light propagation in the raw milk also stays
too complex for a direct theory-based solution, due to the
presence of two species having complex and varying size distribu-
tions under the conditions of multiple scattering. As a conse-
quence, optical spectroscopic methods of fat and protein
determination are mainly based on the components0 absorption,
provided that the scatter is possibly avoided or suppressed [5]. The
visible (Vis) light region (360–780 nm), where the scatter strongly
dominates, is rarely used in quantitative milk analysis [6,7]. At the
same time, the Vis region is very attractive for the analysis,
because of a wide choice of available equipment, including light
sources and guides, optics and detectors.

The feasibility of scatter-based quantitative analysis of fat and
total protein in the raw milk using Vis and short-wave near
infrared (SW-NIR) spectroscopy has been recently proved by
Bogomolov et al. [8–10], the difference of individual spectral
patterns (i.e. wavelength dependencies) of scatter by differently
sized protein and fat particles was shown to be sufficient for their
quantitative analysis using formal multivariate modelling, e.g. PLS
regression. The method successfully handles an artificially intro-
duced variation of fat globule sizes [8].
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The present study develops further the ideas of using light
scatter effect for analysis of milk quality published in [8,9] and
aims at the elaboration of a technologically simple approach to the
quantitative analysis of raw milk fat and protein content, using
light emitting diodes (LED) as monochromatic light sources and
conventional digital RGB imaging as a detection technique. This
combination, in fact, is an inexpensive alternative to optical
spectroscopy. In this novel approach, an essential loss of spectral
resolution is compensated by the detection area extension, thus,
giving an advantage of detecting spatial intensity distribution of
the scattered light.

Conventional digital imaging nowadays is increasingly used for
quantitative analysis in industrial applications [11–13] but stays an
uncommon tool for the milk analysis. The published work has
been mainly devoted to a microscopic investigation of milk
particles and their aggregates, e.g. [14–16]. To our knowledge,
digital imaging has not been used for the quantitative analysis of
milk constituents before. General feasibility of this approach
was suggested in [17], where the opposite problem had been
solved: rendering images of different media by their scatter and
absorption properties using the Lorenz–Mie scattering theory
generalisation.

This study presents the evaluation results of using conventional
RGB digital imaging and light emitting diode (LED) illumination for
quantitative determination of fat and total protein in raw milk. The
modelling and validation is based on a designed experiment
including the variability of fat globule sizes. Initially, intensity
histograms, first-order statistics and Angle Measure Technique
(AMT) have been tried as image features. Finally, a simple but
efficient feature extraction algorithm, which takes into account
spatial intensity distribution on the milk images, was developed.
The PLS regression on features, calculated using the developed
algorithm, gave models with practically relevant prediction per-
formances confirming the feasibility of suggested approach. The
results were compared with a recent Vis/SW-NIR spectroscopic
study of the same sample set [8].

2. Materials and methods

2.1. Samples

The experimental samples were prepared from two sets of raw
milk standards (QSE GmbH, Wolnzach, Germany) with predomi-
nantly varying fat or protein content – F- and P-set, respectively
(Table 1). Sixteen samples were prepared from each set: four
initial standards (with known fat and total protein content) and
twelve their pair-wise mixtures in proportions 1:2 and 2:1. Every
sample was analysed three times: in its original state and after two
subsequent homogenisations: for 10 and 20 s, using an ultrasound
homogeniser. The homogenisation was applied to introduce gentle
variation of particle size distribution occurring in the natural milk
and significantly affecting its scattering properties [10,18]. Sample

homogenisation degree was qualitatively characterised by optical
microscopy and Vis/SW-NIR spectroscopy [8]. Spectral changes
caused by applied homogenisation times were comparable in
magnitude with the effects fat and protein content differences in
the chosen range, and therefore, presented an essential factor of
sample variability.

Thereby each of the two sets was represented by three
measurements (one for each homogenisation degree) of 16 sam-
ples, which gave 48 measurements per set (96 in total). Further
information about the samples can be found in [8].

2.2. Image acquisition and preprocessing

Images were acquired with DSLR camera Canon 400D fixed on
a tripod. For every measurement, 4 ml of milk was put into a Petri
dish (inner diameter of 30 mm) placed in front of the camera so
that the centre of the dish was coaxial with the lens optical axis.
The thickness of milk layer in the dish was about 4 mm. Three
powerful LEDs emitting blue (maximum intensity at 465 nm)
green (526 nm), and red (630 nm) light, were used for sample
illumination. The emission spectra of the diodes are shown in
Fig. 1. The incident light was delivered through a fibre optical
guide with 1.2 mm diameter, which was coaxially mounted at 901
to the to the Petri dish bottom. Thereby every image captured a
LED light spot diffusely transmitted through the milk sample. The
image acquisition was performed in a dark room at 2471 1C.

Five photos for each light source were taken using bracketing
with exposition times of 1, 1/2, 1/4, 1/8, and 1/15 s. Therefore,
every measurement was represented by 15 images. The acquired
images were cropped automatically to remove the dish walls.

The cropping algorithm worked with grayscale representation
of the images. For each image it found a light spot with maximum
intensity using threshold segmentation, estimated the centre of
the spot and cropped an image using equal distances from the
centre, resulting in symmetric and easily comparable pictures. The
final images had size of 1024�1024 pixels. Fig. 2 shows a full set
of preprocessed images taken from one of the standards after 10 s
of homogenisation.

The high dynamic range (HDR) images were also made for
every bracketing series using an algorithm described in [19] and
implemented in Matlab Image Processing Toolbox function
makehdr. In this case every measurement was represented by
three HDR images – one for each light source.

The purpose of using HDR images was twofold: to decrease the
number of variables taking advantage of enhanced image dynamic
range provided by the bracketing technique. HDR technique allows

Table 1
Fat and total protein content in raw milk standards.

Sample Fat, % w/w Protein, % w/w

P1 3.63 2.99
P2 4.27 3.30
P3 4.03 3.71
P4 4.33 4.05
F1 1.99 3.45
F2 3.23 3.47
F3 4.22 3.61
F4 5.47 3.21 Fig. 1. Emission spectra of the used LEDs. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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capturing a larger dynamic range and represents intensity levels
between the lightest and darkest part of image more accurate than
the conventional imaging. In digital photography HDR images are
typically used to improve the rendering and introduce various art
effects. But the fact that it can emphasise small differences on an
image can be also employed for analysis.

2.3. Extracting features

One of the simplest feature selection tools, operating on pixel
intensities only, is the intensity distribution histogram. Elements
of such histogram show fractions of image pixels having intensity
within a particular range. In the standard digital imaging used in
the present study, the pixel intensity varies from 0 (no light) to
255 (maximum intensity) so that the histogram has 256 values.
It is also possible to reduce the detail by binning and calculating
the histogram for selected intensity ranges. However, the histo-
gram is an integral property of the whole image that does not
retain any information on the spatial intensity distribution.

Another approach, specifically adjusted for the problem at
hand, was based on a straightforward assumption that pixels
equally distant from the illumination spot are supposed to be
identical, and thus, can be averaged. Therefore, the image can be
transformed into a radial intensity function that can be used for
the selection of features with a necessary spatial resolution.

In accordance to this approach, an image is divided to N¼2n

concentric rings by using circles with radii: M/N, 2M/N, 3M/N, …,
M, where M is a half of image width, in our case 512 pixels.

Then an average intensity of pixels with distance from the
centre between XM/N and (Xþ1)N/M (lying between circles
with these radii) was calculated for every X from 0 to N–1.
In order to do that, the image was transformed to a matrix with
rows corresponding to the image pixels. The columns of the matrix
included the pixels coordinates, intensity, and distance to the

image centre, so the proper subset could be easily selected using
logical expressions.

Thereby the calculated features show both average intensity of
an image as well as its decrement, depending on a distance from
the image centre. The thickness of the rings, and, consequently,
their amount, N, is a spatial resolution parameter.

Fig. 3 shows a scheme of calculating the features using N¼8
rings. Thus, for X¼3 intensity of all pixels between the 3rd and 4th
circles will be averaged (grey area on the picture).

Fig. 2. A set of preprocessed images taken for the sample P1 (see Table 1) with exposition time: 1, 1/2, 1/4, 1/8, and 1/15 s.

Fig. 3. Scheme of concentric rings based features calculation for N¼8. On the step
4 average intensity of all pixels between circles X¼3 and X¼4 will be calculated.
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The two above described types of features were calculated for
15 images of every milk sample. Besides that, this radial averaging
approach was also used for calculating features of HDR images,
produced from every bracketing series.

2.4. Data analysis

Visual inspection of images and principal component analysis
(PCA) [20] were preliminary used for exploring the images and
calculated features.

Partial Least-Squares regression was used to build linear
regression models for prediction of fat and protein content. Ring
based features calculated for 16, 24, 32 and 48 rings were used as
predictors in order to find optimal solution. The ring features were
smoothed using Savitsky-Golay filter (filter width¼3 and poly-
nomial order¼1), processed with Standard Normal Variate algo-
rithm and mean centred.

Random repeated cross-validation with four segments and
eight iterations was used for validating all PLS models shown in
the present paper. In addition to traditional prediction perfor-
mance indicators such as determination coefficient (R2) and root
mean squared error (RMSE), a ratio of standard error of cross-
validated prediction (SECV) to sample standard deviation (RPD¼
SDy/SECV) was used to compare the obtained models [21].

The models were optimised by variable selection based on the
competitive adaptive reweighted sampling (CARS) method. CARS
improves regression models by selecting variables with large
absolute regression coefficients [22]. Originally developed for
dealing with spectra, it works well for any multivariate data with
high collinearity.

The individual PLS models for protein and fat content predic-
tion were built both separately on the respective set and for the
joint set of 96 samples.

All calculations were carried out in MATLAB R2012a (Math-
works) supplemented with PLS_Toolbox v. 7.0 (Eigenvector
Research Inc., Wenatchee, USA.).

3. Results and discussions

3.1. Visual inspection of images

On the first step, a visual inspection of the images with
different fat and protein content taken for samples with or with-
out homogenisation has been carried out (Fig. 4). An increase in
protein and, particularly, in fat content results in a noticeable
growth of sample optical density, and hence, lower general
intensities and smaller sizes of observed light spots (Fig. 4a and
b). It holds true for all three light sources, however, at some
weaker differences for the red. The ultrasound treatment braking
down the larger fat globules has similar effect on the images.

In all these cases, the observed growth of sample optical
density is accounted for by growing scatter intensity due to the
increasing particle number (or density) in a sample [10].

For the green light, these differences are clearly seen in the 3D
representation of images shown in Fig. 5. Both spot sizes and their
spatial profiles obviously depend on fat and protein content as
well as on the homogenisation time. It can also be seen, that the
effect of particle size on an image of the same sample (Fig. 5c)
prevails over the effects of sample compositional variations
(Fig. 5a and b).

3.2. Feature selection and regression analysis of individual sets

The modelling of F- and P-set individually performed in this
section is advantageous for exploratory data analysis, to study the
variability effects and to compare different approaches to feature
selection from images.

Several feature selection techniques have been tried and
compared in preliminary PLS regression modelling applied to
individual P- and F-set. The best results were obtained with
histogram-based selection and the method of concentric rings
suggested in the present work (Section 2.3).

Distribution histograms were calculated for each photo and
used as features, so the feature vector for each measurement
included 256 intensities�3 light sources�5 exposition times¼

Fig. 4. Visual inspection of images for exposition time 1/4 s: (a)samples P1 (left) and P4 (right) without homogenisation, (b) samples F1 (left) and F4 (right) without
homogenisation, (c) sample F4 after 10 s (left) and 20 s (right) of homogenisation.
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Fig. 5. 3D representation of green light intensity for exposition time 1/4 s: (a) samples F1 (top) and F4 (middle) and the difference between them (bottom), (b) samples P1
(top) and P4 (middle) as well as the difference between them (bottom), (c) sample F4 without homogenisation (top) and after 20 s of homogenisation (middle), the bottom
image shows the difference. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. PCA results for concentric rings based features for P-set (left) and F-set (right). On the top plots (PC1 vs. PC2) colour shows different homogenisation time. On the
bottom plots (PC1 vs. sample number) a concentration of protein and fat are colour-coded. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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3840 values. The obtained PLS models were better for the predic-
tion of total protein content (R2¼0.88) than fat (R2¼0.81), but
both were far from the satisfactory values.

The advantage of suggested technique using concentric seg-
ments over other feature extraction methods could be expected, as
the histogram features do not take spatial pixel arrangement into
account.

To investigate the internal data structure of the concentric rings
features, PCA was performed on F- and P-set of samples. PCA
results for features, calculated using 16 rings, are shown in the
Fig. 6. It is clear that the first two PCs describe both homogenisa-
tion degree (in particular, PC1) and sample composition, i.e. fat (for
F-set) and total protein (for P-set) content. The first PC is therefore
responsible for the total density of scattering particles in a sample.
This observation is in good agreement with the results of visual
data inspection given above and with previous spectroscopic study
of similar data [8].

The results for PLS regression on concentric ring features are
shown in Tables 2 and 3. The number of rings was found to have a
minor influence to the model performance, final (best) models were
obtained using 48 rings. Thus, the best model for prediction of fat in
F-set had determination coefficient for cross-validated samples
0.973 with 3 latent variables (RMSECV¼0.147). Prediction of protein
content for P-set was comparable both with original data as well as
after variable selection giving cross-validated predictions with
R2¼0.97 with 3 latent variables (RMSECV¼0.049). Using HDR
images did not improve the results; in general all models built for
HDR images had slightly worse prediction performance.

In all cases using CARS for variable selection allowed to get
models with better predictions. Predicted vs. measured and RMSE
plots for the best models with and without variable selection are
shown in Fig. 7 for F-set and in Fig. 8 for P-set.

3.3. Joint data analysis

On the next step the proposed modelling method has been
applied for joint analysis of the whole dataset including 96
measurements. Combining two sets of F- and P-samples eliminates
some correlation between fat and protein (residual r¼0.03)
existing in initial standards [8], and thus, provides a realistic
estimation of the model performances.

Preliminary investigation has brought similar results for the
optimal number of rings in the feature selection algorithm as for
the individual (Section 3.2). Therefore, the concentric ring algo-
rithm with 48 rings was applied prior to the modelling. The PCA
scores plots looked very similar to the one made for individual
F-set.

The results of PLS-regression for prediction of each of the
quality parameters with and without variable selection are shown
in Table 4, the corresponding predictions plots are presented in
Fig. 9. An obvious drop in prediction performance was discovered
for fat (cross-validated R2¼0.890 vs. 0.973 for individual F-set) and
especially for protein (cross-validated R2¼0.724 vs. 0.974 for
individual P-set) content. Variable selection led to some minor

Table 2
PLS modelling and statistics for cross-validated predictions for fat content in F-set.

Type nLV RMSECV RPD R2

48 seg, CARS varsel 3 0.147 6.083 0.973
48 seg, no varsel 5 0.216 4.150 0.944
48 seg, HDR, CARS carsel 4 0.211 4.123 0.943
48 seg, HDR, no varsel 5 0.331 2.571 0.862

Table 3
PLS modelling and statistics for cross-validated predictions for protein content in
P-set.

Type nLV RMSECV RPD R2

48 seg, CARS varsel 3 0.049 6.147 0.974
48 seg, no varsel 4 0.072 4.150 0.944
48 seg, HDR, CARS varsel 4 0.063 4.617 0.954
48 seg, HDR no varsel 4 0.091 3.290 0.911

Fig. 7. PLS regression results on concentric rings based features prediction of fat in F set (top—with original data; bottom—after CARS selection of variables).
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improvements in prediction performance and reduced the number
of latent variables.

3.4. Discussion

Pixel intensity on a milk sample image depends on size and
density of scattering fat and protein particles, and consequently,
on their content. At the same time, the detected intensity depends
on a pixel position with regard to the light source (i.e. the angle)
and on the wavelengths. The efficient feature extraction method
proposed in this paper was able to capture and emphasise both
spectral and spatial differences between individual pixels.

The performances of models built for P- and F-set
(Tables 2 and 3) individually are noticeably higher than in the joint
model (Table 4), but lower than in the spectroscopic analysis in the
region 400–1100 nm [8], where RMSECV¼0.08 and 0.04 were
reported for fat and total protein, respectively. Similar measurement
geometry (diffuse transmission through a milk layer of about 4 mm)
and identical experimental design allow interpreting the difference
between the present method and spectroscopic analysis as a result
of technical simplification. Spectral region in the present method is
squeezed to about 200 nm (Fig. 1) against 700 nm range in the
spectroscopic method; and hundreds of spectral variables are
replaced with three broad band channels. Considering this dramatic
reduction of spectral information content the resulting performance
loss was absolutely expected. Although some gain is definitely
obtained from using space-resolve image information (compare

the histogram and ring-based feature selection methods), it has not
been decisive here. Nevertheless, the accuracies offered by the
suggested imaging method are absolutely acceptable for a quick and
inexpensive analytical technique like this.

The present new technique has essential sensitivity to the scatter-
driven effects on an image. At the same time, the deficiency of spectral
information, e.g. minor components0 absorbance that is generally
observed below 450 nm and above 900 nm, makes the analysis in
the whole sample variability range, provided by the present experi-
mental design, challenging. This information deficiency can straight-
forwardly explain the joint model performance reduction compared to
individual techniques (although the reference spectroscopic method
was capable of handling this perfectly). Partially, it can be related to
the presence of soluble proteins that do not scatter and thus stay
invisible for the imaging, while due to the absorption in SW-NIR
region can be detected and “factorised” by the PLS-regressionmodel in
case of full spectroscopic data. In this situation, the observed model
deterioration could be caused by a difference in whey protein content
between F- and P-set (which is very likely, considering that skim milk
powder can be added by the standard preparation technology [8]).
Another observation indirectly confirming the negative role of
P-samples with artificially enhanced protein content can be made
when studying Fig. 9. These samples taking middle position in the fat
concentration range on predicted vs. reference plot exhibit noticeably
higher prediction errors than F-set. Similar effect from other minor
components cannot also be excluded.

The prediction accuracy of protein content for individual set is
high (R2¼0.974/0.944, 3/5 LVs); it is closer to the results of
spectroscopic analysis [8]. In this case, similar statistics of fat
content prediction (R2¼0.973/0.944, 3/5 LVs) look confusing at a
first glance, considering stronger effect of fat content on the image
intensity (Fig. 5). Worse performance of the fat model compared to
the spectroscopic method [8] can be explained, in addition to the
above considerations, by close similarity of two effects: fat content
enhancement and ultrasound treatment, both leading to the
growth in fat globule density in a sample, and consequently, to
higher scatter intensity. In the case of spectroscopy PLS regression

Fig. 8. PLS regression results on concentric rings based features for prediction of protein in P set (top—with original data; bottom—after CARS selection of variables).

Table 4
PLS modelling and statistics for cross-validated predictions for the joint set.

Type nLV RMSECV RPD R2

Fat, no varsel 6 0.251 2.415 0.852
Fat, CARS varsel 4 0.215 2.882 0.890
Prot, no varsel 6 0.148 1.294 0.595
Prot, CARS varsel 5 0.122 1.670 0.723

S. Kucheryavskiy et al. / Talanta 121 (2014) 144–152150



successfully handles this situation [8] by distinguishing those
effects by their full-range spectral patterns. Perhaps, in the present
method this similarity presents a more serious complication. At
the same time, the applied homogenisation is known to have little

or no effect on the protein micelles, and hence, it does not affect
the performance of total protein models.

Correlation between fat and protein content is quite common
for milk and it can be further enhanced in the standards due to

Fig. 9. PLS regression results on concentric rings based features for prediction of protein (left) and fat (right) in the joint set of samples (top—with original data; bottom—

after CARS selection of variables).

Fig. 10. Regression coefficients for F-set (left) and P-set (right) before and after variable selection (grey lines show rescaled original variables).
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their preparation methods [8]. This correlation was noteceable for
the P-set (0.72) and moderate for the F-set (�0.47), in any case,
much lower than predicted vs. reference correlation. So it can be
assumed that the models are casual, rather than based on indirect
spurious correlations (i.e. if the method were sensitive to one
component only and predicted the other one because of their
correlation). Investigation of the regression coefficients for the
best models showed that despite obvious similarity (Fig. 10), there
is a difference, e.g. red channel seems to be more important for
prediction of protein. This conclusion is also confirmed by the
variables selected for each set (Fig. 10). Therefore, existing fat and
protein correlation in individual sample sets should not be
considered as the main reason of their better performance in the
modelling.

Another minor complication was caused by outliers. In this
study there were from two to four samples that had large Q2

residuals (squared distance from a sample to latent variable space)
and/or high leverage (squared distance from projection of sample
to latent variable space to the origin of the space). Inspecting
photos from these samples showed the presence of air bubbles in
the milk, which, in spite of great efforts removing them before
measurements, sometimes remained causing significant difference
in features. Thus, for the future modelling, it is important avoiding
the bubbles as well as other artefacts before taking photos is one of
technical and modelling problems to be solved in the future
method development and its transformation onto a measuring
device.

4. Conclusions

The capability of accurate prediction of fat and total protein
content in raw milk from conventional digital images in the
presence of significant variability of compositions and particle
sizes is the most valuable result of this study. Although the model
performances are worse than in a physically similar scatter-based

method using Vis/SW-NIR spectroscopy [8], the present results are
of high practical significance, considering the technical simplicity
of suggested technique. This approach can be utilised for the
development of compact and inexpensive analysers of raw milk
quality, in particular, for in-line or field measurement.
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